Live
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
{{ item.date }}
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} )
R Weekly 2024-W50 R-Universe Funding, Positron, AI for Shiny
This week’s release was curated by Eric Nantz, with help from the R Weekly team members and contributors.
Highlight
Insights
R in the Real World
-
Modernizing Clinical Trial Design and Analysis to Improve Efficiency & Flexibility
-
{SLmetrics}: Machine Learning performance evaluation on steroids
R in Organizations
R in Academia
Resources
New Packages
📦 Keep up to date wtih CRANberries 📦
CRAN
-
{tablespan} 0.1.7: Create Satisficing ‘Excel’, ‘HTML’, ‘LaTeX’, and ‘RTF’ Tables using a Simple Formula
-
{qcluster} 1.2: Clustering via Quadratic Scoring
-
{PhenotypeR} 0.1.0: Assess Study Cohorts Using a Common Data Model
-
{sooty} 0.1.0: Data Source Catalogues Online for Southern Ocean Ecosystem Research
-
{robqda} 1.0: Robust Quadratic Discriminant Analysis
-
{RegDDM} 1.0: Generalized Linear Regression with DDM
-
{rectpacker} 1.0.0: Rectangle Packing
-
{recforest} 1.0.0: Random Survival Forest for Recurrent Events
-
{RapidFuzz} 1.0: String Similarity Computation Using ‘RapidFuzz’
-
{mixedbiastest} 0.2.1: Bias Diagnostic for Linear Mixed Models
-
{MIGEE} 0.1.0: Impute Missing Values and Fitting Linear Mixed Effect Model
-
{iclogcondist} 1.0.1: Log-Concave Distribution Estimation with Interval-Censored Data
-
{GVS} 0.0.1: ‘Geocoordinate Validation Service’
-
{GOLDprice} 0.1.0: Gold Price Data
-
{GDILM.SEIRS} 0.0.1: Spatial Individual Level Modeling of Infectious Disease Transmission with Reinfection Dynamics
-
{ErlangC} 0.1.0: Solve Erlang-C Model
-
{educationR} 0.1.0: A Comprehensive Collection of Educational Datasets
-
{drhutools} 1.0.0: Political Science Academic Research Gears
-
{BayesianFitForecast} 1.0.0: Bayesian Parameter Estimation and Forecasting for Epidemiological Models
-
{airship} 1.4.3: Visualization of Simulated Datasets with Multiple Simulation Input Dimensions
-
{wooldridge} 1.4-4: 115 Data Sets from “Introductory Econometrics: A Modern Approach, 7e” by Jeffrey M. Wooldridge
-
{iClusterVB} 0.1.3: Fast Integrative Clustering and Feature Selection for High Dimensional Data
-
{aphylo} 0.3-4: Statistical Inference and Prediction of Annotations in Phylogenetic Trees
-
{extractox} 0.1.0: Extract Tox Info from Various Databases
-
{csmGmm} 0.3.0: Conditionally Symmetric Multidimensional Gaussian Mixture Model
-
{basicspace} 0.25: Recovering a Basic Space from Issue Scales
-
{sshicm} 0.1.0: Information Consistency-Based Measures for Spatial Stratified Heterogeneity
-
{resourcecode} 0.2.1: Access to the ‘RESOURCECODE’ Hindcast Database
-
{RCNA} 1.0: Robust Copy Number Alteration Detection (RCNA)
-
{gtfs2emis} 0.1.1: Estimating Public Transport Emissions from General Transit Feed Specification (GTFS) Data
-
{atime} 2024.11.29: Asymptotic Timing
-
{wdiEF} 1.0.2: Calculation of the Water Deficit Index (WDI) and the Evaporative Fraction (EF) on Rasters
-
{twc} 0.0.1: Terrestrial Water Cycle
-
{sffdr} 1.0.0: Surrogate Functional False Discovery Rates for Genome-Wide Association Studies
-
{scR} 0.1.0: Estimate Vapnik-Chervonenkis Dimension and Sample Complexity
-
{SAKERNAS} 0.1.0: A National Labor Force Survey of Indonesia
-
{RCMsize} 1.0.0: Sample Size Calculation in Reversible Catalytic Models
-
{pipeflow} 0.2.1: Lightweight, General-Purpose Data Analysis Pipelines
-
{MEDesigns} 1.0.0: Mating Environmental Designs
-
{ldmppr} 1.0.3: Estimate and Simulate from Location Dependent Marked Point Processes
-
{ILRCM} 0.1.0: Convert Irregular Longitudinal Data to Regular Intervals and Perform Clustering
-
{IDLFM} 0.0.2: Individual Dynamic Latent Factor Model
-
{gfoRmulaICE} 0.1.0: Parametric Iterative Conditional Expectation G-Formula
-
{crimedatasets} 0.1.0: A Comprehensive Collection of Crime-Related Datasets
-
{orthGS} 0.1.6: Orthology vs Paralogy Relationships among Glutamine Synthetase from Plants
-
{antaresViz} 0.18.3: Antares Visualizations
GitHub or Bitbucket
Updated Packages
-
{crandep} 0.3.11: Network Analysis of Dependencies of CRAN Packages - diffify
-
{sfnetworks} 0.6.5: Tidy Geospatial Networks - diffify
-
{rstanemax} 0.1.7: Emax Model Analysis with ‘Stan’ - diffify
-
{rollama} 0.2.0: Communicate with ‘Ollama’ to Run Large Language Models Locally - diffify
-
{textshaping} 0.4.1: Bindings to the ‘HarfBuzz’ and ‘Fribidi’ Libraries for Text Shaping - diffify
-
{shinyStorePlus} 1.3: Secure in-Browser and Database Storage for ‘shiny’ Inputs, Outputs, Views and User Likes - diffify
-
{rpostgis} 1.6.0: R Interface to a ‘PostGIS’ Database - diffify
-
{cowsay} 1.0.0: Messages, Warnings, Strings with Ascii Animals - diffify
-
{geostan} 0.8.1: Bayesian Spatial Analysis - diffify
-
{pharmr} 1.4.0: Interface to the ‘Pharmpy’ ‘Pharmacometrics’ Library - diffify
-
{parallelly} 1.40.1: Enhancing the ‘parallel’ Package - diffify
-
{simdata} 0.4.1: Generate Simulated Datasets - diffify
-
{bit} 4.5.0.1: Classes and Methods for Fast Memory-Efficient Boolean Selections - diffify
-
{mongolite} 2.8.2: Fast and Simple ‘MongoDB’ Client for R - diffify
-
{apache.sedona} 1.7.0: R Interface for Apache Sedona - diffify
-
{container} 1.0.5: Extending Base ‘R’ Lists - diffify
-
{fastplyr} 0.5.0: Fast Alternatives to ‘tidyverse’ Functions - diffify
Videos and Podcasts
-
DuckDB and duckplyr: An in-process database management system in your R script
-
Explore Real-World hospital Electronic Health Records data with {ggehr}
Shiny Apps
Tutorials
-
How to Find and Count Missing Values in R: A Comprehensive Guide with Examples
-
Time Series Forecasting in R: Forecasting with Supervised Machine Learning Models
R Project Updates
Updates from R Core:
Call for Participation
Upcoming Events in 3 Months
Events in 3 Months:
Connect
Join the Data Science Learning Community
rtistry
Day 30: The Final Map! 🐍 Rattlesnake venom lectin (1muq), a galactose-specific C-type lectin, visualized in 3D. Went deep into micromapping, and it paid off! Big thanks to & the {raymolecule} R package. #30DayMapChallenge #Micromapping 🧬✨
— Brooks Groves (@bdgroves.bsky.social) December 6, 2024 at 7:27 PM
[image or embed]
Quotes of the Week
What is the most annoying thing in R? I will go first - functions with upper case letters, such as the View function 🤦🏻♂️ #RStats
— Rami Krispin (@ramikrispin.bsky.social) December 2, 2024 at 5:27 PM
Just realized the bluesky may not be aware that you can access dad jokes (via the icanhazdadjoke API) directly in #rstats with the {dadjokeapi} 📦!
— Jeff Hollister (@jhollist.bsky.social) December 5, 2024 at 7:42 AM
[image or embed]