Live
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
{{ item.date }}
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} )
R Weekly 2024-W37, chart axes, custom roxygen2 tag, FAIR
This week’s release was curated by Batool Almarzouq, with help from the R Weekly team members and contributors.
Highlight
Insights
-
R-Ladies Bariloche in Argentina: Fostering a Different Approach to Leadership
-
Gender and sexuality in Australian surveys and census by @ellis2013nz
R in Academia
New Packages
📦 Keep up to date wtih CRANberries 📦
CRAN
-
{rplanes} 0.1.0: Plausibility Analysis of Epidemiological Signals
-
{mmints} 0.1.0: Workflows for Building Web Applications
-
{hdar} 1.0.0: ‘REST’ API Client for Accessing Data on ‘WEkEO HDA V2’
-
{ggvolcano} 0.1.3: Publication-Ready Volcano Plots
-
{geoidep} 0.1.0: Download Geographic Data on Various Topics Provided and Managed by the Spatial Data Infrastructure of Peru
-
{flowmapblue} 0.0.2: Flow Map Rendering
-
{easybio} 1.0: Comprehensive Single-Cell Annotation and Transcriptomic Analysis Toolkit
-
{SuperCell} 1.0: Simplification of scRNA-Seq Data by Merging Together Similar Cells
-
{pandemics} 0.1.0: Monitoring a Developing Pandemic with Available Data
-
{mlmc} 2.0.2: Multi-Level Monte Carlo
-
{GeRnika} 1.0.0: Simulation, Visualization and Comparison of Tumor Evolution Data
-
{fastpng} 0.1.5: Read and Write PNG Files with Configurable Decoder/Encoder Options
-
{g3viz} 1.2.0: Interactively Visualize Genetic Mutation Data using a Lollipop-Diagram
-
{rPDBapi} 2.1: A Comprehensive Interface for Accessing the Protein Data Bank
-
{wget} 0.0.2: Setting Download Method to ‘wget’
-
{AOboot} 0.1.0: Bootstrapping in Different One-Way and Two-Way ANOVA
-
{pooledpeaks} 1.0.5: Genetic Analysis of Pooled Samples
-
{ropenmeteo} 0.1: Wrappers for ‘Open-Meteo’ API
-
{rice} 0.1.1: Radiocarbon Calibration Equations
-
{QuICSeedR} 0.1.2: Analyze Data for Fluorophore-Assisted Seed Amplification Assays
-
{pakret} 0.1.0: Cite ‘R’ Packages on the Fly in ‘R Markdown’ and ‘Quarto’
-
{GeoThinneR} 1.0.0: Simple Spatial Thinning for Ecological and Spatial Analysis Coding Skills
-
{wintime} 0.1.0: Win Time Methods for Time-to-Event Data in Clinical Trials
-
{TWW} 0.0.1: Growth Models Hazards Model
-
{cbbinom} 0.1.0: Continuous Analog of a Beta-Binomial Distribution
Updated Packages
{corporaexplorer} 0.9.0: A ‘Shiny’ App for Exploration of Text Collections - diffify
-
{blme} 1.0-6: Bayesian Linear Mixed-Effects Models - diffify
-
{kit} 0.0.19: Data Manipulation Functions Implemented in C - diffify
-
{pbdZMQ} 0.3-12: Programming with Big Data – Interface to ‘ZeroMQ’ - diffify
-
{salso} 0.3.41: Search Algorithms and Loss Functions for Bayesian Clustering - diffify
-
{treesitter.r} 1.1.0: ‘R’ Grammar for ‘Tree-Sitter’ - diffify
-
{sf} 1.0-17: Simple Features for R - diffify
-
{maxstablePCA} 0.1.1: Apply a PCA Like Procedure Suited for Multivariate Extreme Value Distributions - diffify
-
{MacBehaviour} 1.2.7: Behavioural Studies of Large Language Models - diffify
-
{geobr} 1.9.1: Download Official Spatial Data Sets of Brazil - diffify
-
{adehabitatMA} 0.3.17: Tools to Deal with Raster Maps - diffify
-
{adehabitatLT} 0.3.28: Analysis of Animal Movements - diffify
-
{SHELF} 1.11.0: Tools to Support the Sheffield Elicitation Framework - diffify
-
{pedFamilias} 0.2.4: Import and Export ‘Familias’ Files - diffify
-
{emoa} 0.5-3: Evolutionary Multiobjective Optimization Algorithms - diffify
-
{caviarpd} 0.3.13: Cluster Analysis via Random Partition Distributions - diffify
-
{bigsparser} 0.7.3: Sparse Matrix Format with Data on Disk - diffify
-
{AFR} 0.3.6: Toolkit for Regression Analysis of Kazakhstan Banking Sector Data - diffify
-
{vivainsights} 0.5.4: Analyze and Visualize Data from ‘Microsoft Viva Insights’ - diffify
-
{spatialwarnings} 3.1.0: Spatial Early Warning Signals of Ecosystem Degradation - diffify
-
{polle} 1.5: Policy Learning - diffify
-
{outliertree} 1.10.0: Explainable Outlier Detection Through Decision Tree Conditioning - diffify
-
{NNS} 10.9.2: Nonlinear Nonparametric Statistics - diffify
-
{netropy} 0.2.0: Statistical Entropy Analysis of Network Data - diffify
-
{NADA2} 1.1.8: Data Analysis for Censored Environmental Data - diffify
-
{DrugUtilisation} 0.7.1: Summarise Patient-Level Drug Utilisation in Data Mapped to the OMOP Common Data Model - diffify
-
{rPDBapi} 2.1: A Comprehensive Interface for Accessing the Protein Data Bank - diffify
-
{rgplates} 0.5.0: R Interface for the GPlates Web Service and Desktop Application - diffify
-
{rts2} 0.7.6: Real-Time Disease Surveillance - diffify
-
{lfproQC} 0.2.0: Quality Control for Label-Free Proteomics Expression Data - diffify
-
{genekitr} 1.2.8: Gene Analysis Toolkit - diffify
-
{flowmapper} 0.1.2: Draw Flows (Migration, Goods, Money, Information) on ‘ggplot2’ Plots - diffify
Videos and Podcasts
-
TidyX episode 186 : Gapminder camcorder - be kind and rewind
Tutorials
-
Use Posit tools with data in DuckDB, Databricks, and Snowflake
-
Harness the Full Potential of Case-Insensitive Searches with grep() in R
R Project Updates
Updates from R Core:
Upcoming Events in 3 Months
Events in 3 Months:
Connect
Join the Data Science Learning Community
artistry
Happy #FathersDay! 🧍🏡
— Atlas of Living Aust (@atlaslivingaust) August 31, 2024
We plotted emu occurrence data to celebrate the animal worlds’ great dads & dad figures... & stumbled on some egg-ceptional looking patterns… 🪺🗺️ #Rtistry
Male emus' both incubate & rear those little stripey babies we all know & love... all alone! 🐣 pic.twitter.com/vrde1CNyme