Live
- 
            
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
 
            
        
{{ item.date }}
- 
            
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} ) 
            
        
R Weekly 2023-W20 ggflowchart, Dockerized Development Environments, Production is like Ultra Running
This week’s release was curated by Sam Parmar, with help from the R Weekly team members and contributors.
Highlight
- 
    
Why you should consider working on a dockerized development environment
 - 
    
Colin Fay, Keynote: Production is like ultra running: brutal, ungrateful, but worth every step
 
Insights
![]()


- 
    
Pledging My Time VI: scraping and analysis of race results in R
 - 
    
Bootstrap Intervals: Understanding the Gender-based Over-qualified Rates
 
R in the Real World

R in Organizations
R in Academia
Resources
New Packages
CRAN
- {annmatrix} 0.1.1: Annotated Matrix: Matrices with Persistent Row and Column Annotations
 - {ggflowchart} 1.0.0: Flowcharts with ‘ggplot2’
 - {pressuRe} 0.1.0: Imports, Processes, and Visualizes Biomechanical Pressure Data
 - {OHCSpackage} 0.1.5: Prepare Housing Data for Analysis
 - {iplookupapi} 0.1.0: Client for the ‘iplookupapi.com’ IP Lookup API
 - {ipbase} 0.1.1: Client for the ‘ipbase.com’ IP Geolocation API
 - {emailvalidation} 0.1.0: Client for the ‘emailalvalidation.io’ E-Mail Validation API
 - {NLPutils} 0.0-5.1: Natural Language Processing Utilities
 - {qdap} 2.4.6: Bridging the Gap Between Qualitative Data and Quantitative
 - {qdapTools} 1.3.7: Tools for the ‘qdap’ Package Analysis
 - {modACDC} 1.0.0: Association of Covariance for Detecting Differential Co-Expression
 - {ggtricks} 0.1.0: Create Sector and Other Charts Easily Using Grammar of Graphics
 - {ISAR} 0.1.10: Introduction to Sports Analytics using R (ISAR) Data
 - {WCluster} 1.1.0: Clustering and PCA with Weights, and Data Nuggets Clustering
 - {shiny.exe} 0.1.0: Schedule a Task that Runs a shinyApp then Creates a Shortcut in Current Directory
 - {fetch} 0.1.2: Fetch Data from Various Data Sources
 - {StockDistFit} 1.0.0: Fit Stock Price Distributions
 - {ggplot2.utils} 0.2.1: Selected Utilities Extending ‘ggplot2’
 - {tutorial.helpers} 0.2.3: Helper Functions for Creating Tutorials
 - {ggrounded} 0.0.3: Rounded Bar Plots
 - {covid19br} 0.1.5: Brazilian COVID-19 Pandemic Data
 - {tidytlg} 0.1.1: Create TLGs using the ‘tidyverse’
 - {SSplots} 0.1.1: Stock Status Plots (SSPs)
 - {shiny.telemetry} 0.1.0: ‘Shiny’ App Usage Telemetry
 - {rfars} 0.3.0: Download and Analyze Fatal Crash Data
 - {survstan} 0.0.1: Fitting Survival Regression Models via ‘Stan’
 
Updated Packages
- {nanonext} 0.8.3: R binding for NNG (Nanomsg Next Gen), a successor to ZeroMQ.
 - {fairml} 0.8: Fair Models in Machine Learning - diffify
 - {ggdist} 3.3.0: Visualizations of Distributions and Uncertainty - diffify
 - {pROC} 1.18.2: Display and Analyze ROC Curves - diffify
 - {colorblindcheck} 1.0.2: Check Color Palettes for Problems with Color Vision Deficiency - diffify
 - {stringstatic} 0.1.1: Dependency-Free String Operations - diffify
 - {VeryLargeIntegers} 0.2.1: Store and Operate with Arbitrarily Large Integers - diffify
 - {MCMCvis} 0.16.0: Tools to Visualize, Manipulate, and Summarize MCMC Output - diffify
 - {softbib} 0.0.2: Software Bibliographies for R Projects - diffify
 - {reporter} 1.4.1: Creates Statistical Reports - diffify
 - {rhino} 1.3.1: A Framework for Enterprise Shiny Applications - diffify
 - {confintr} 1.0.1: Confidence Intervals - diffify
 - {tuneR} 1.4.4: Analysis of Music and Speech - diffify
 - {rviewgraph} 1.4.2: Animated Graph Layout Viewer - diffify
 - {AirMonitor} 0.3.11: Air Quality Data Analysis - diffify
 - {parquetize} 0.5.6.1: Convert Files to Parquet Format - diffify
 - {daterangepicker} 0.2.0: Create a Shiny Date-Range Input - diffify
 - {nonmemica} 1.0.1: Create and Evaluate NONMEM Models in a Project Context - diffify
 - {contingencytables} 2.0.0: Statistical Analysis of Contingency Tables - diffify
 - {flashlight} 0.9.0: Shed Light on Black Box Machine Learning Models - diffify
 - {finalsize} 0.2.0: Calculate the Final Size of an Epidemic - diffify
 - {bookdown} 0.34: Authoring Books and Technical Documents with R Markdown - diffify
 - {simplevis} 7.1.0: Wrappers to Simplify ‘leaflet’ Visualisation - diffify
 - {waldo} 0.5.1: Find Differences Between R Objects - diffify
 - {httr} 1.4.6: Tools for Working with URLs and HTTP - diffify
 - {data.validator} 0.2.0: Automatic Data Validation and Reporting - diffify
 - {VedicDateTime} 0.1.4: Vedic Calendar System - diffify
 - {ShinyItemAnalysis} 1.5.0: Test and Item Analysis via Shiny - diffify
 - {ctrdata} 1.13.1: Retrieve and Analyze Clinical Trials in Public Registers - diffify
 - {IncidencePrevalence} 0.3.0: Estimate Incidence and Prevalence using the OMOP Common Data Model - diffify
 - {RNewsflow} 1.2.7: Tools for Comparing Text Messages Across Time and Media - diffify
 - {parabar} 1.1.0: Progress Bar for Parallel Tasks - diffify
 - {reproducible} 2.0.2: Enhance Reproducibility of R Code - diffify
 
Videos and Podcasts
- 
    
Colin Fay, Keynote: Production is like ultra running: brutal, ungrateful, but worth every step
 - 
    
Nicola Rennie: Finding #RStats resources with Shiny and GitHub Actions
 
Shiny Apps
R Internationally
Tutorials
R Project Updates
Updates from R Core:
R Contributor Office Hours, Thursday May 11: Europe/Middle East/Asia-Pacific Hour or Americas Hour
Join an online Office Hour at the time that suits you to:
- discuss how to get started contributing to R
 - get help/feedback on contributions you are working on
 - look at open bugs/work on translations together
 
Upcoming Events in 3 Months
Events in 3 Months:
Jobs
💼 Explore Jobs & Gigs Board on RStudio Community 💼
rtistry
A population density map of the Pearl River Delta. Couldn't decide which one I like better so here's both. The left one includes Hong Kong; the one on the right doesn't and is bound to the shape of the actual delta. Which one do you prefer?#rayshader adventures, an #rstats tale pic.twitter.com/xbfV2ZXIU7
— terence t (@researchremora) May 12, 2023
🔍 Explore the hidden secrets of urban layouts with #rstats! Analysing street orientation the #rspatial way includes just a few lines of code to come up with this plot for every city on earth.
— Marco Sciaini (@shinysci) May 10, 2023
💾 gist: https://t.co/JASpUSBSkf… #gischat pic.twitter.com/3o0B9Ks6pg
Monochrome Trigonometry 709
— aRtfulBot (@aRtfulBot) May 14, 2023
Done in #rstats with #ggplot2#Rtistry #generativeart #creativecoding pic.twitter.com/hEEtnGeYbU