Live
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
{{ item.date }}
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} )
R Weekly 2021-W07 Installing Packages, {distill}, {shiny} App Stories
Release Date: 2021-02-15
This week’s release was curated by Jonathan Carroll, with help from the R Weekly team members and contributors.
Highlight
- The Comprehensive Guide to Installing R Packages from CRAN, Bioconductor, GitHub and Co.
- Distill it down
- Introducing Shiny App Stories
Insights
- Some general thoughts on Partial Dependence Plots with correlated covariates
- Little useless-useful R functions – Use pipe %>% in ggplot2
- New activation functions in mlsauce’s LSBoost
- Introducing Shiny App Stories
- Understand your models with #TidyTuesday inequality in student debt
- The Comprehensive Guide to Installing R Packages from CRAN, Bioconductor, GitHub and Co.
- Target: monitoring a running goal in R
- Painful Package Management
- torch, tidymodels, and high-energy physics
- Distances to Golda Ice-Cream Locations in Israel - see here for scripts/data
- Microsoft365R: an R interface to the Microsoft 365 suite
- How to be Successful! The Role of Risk-taking: A Simulation Study
- Teaching Quantitative Social Science in Times of COVID-19: How to Generate and Distribute Individualized Exams with R and RMarkdown
- coder Makes Medical Coding less Messy
- Little useless-useful R functions – Useless R poem for Valentine
- Distill it down
- Fully Native M1/Apple Silicon R Setup
- Getting a Handle on macOS App Entitlements with R
- It Has Always Been Wrong to Call order on a data.frame
- Causal effect of Elon Musk tweets on Dogecoin price
- Understanding Variance Explained in PCA – Algebraic interpretation
- Feel like the cat that got the cream with {forcats}. Tame your categorical data using the {forcats} package.
R in the Real World
R in Organizations
R in Academia
Resources
New Packages
CRAN
- td 0.0.1 on CRAN: New Finance Data Package
- {coder}: Deterministic Categorization of Items Based on External Code Data.
- {visStatistics} 0.1.1: Automated Visualization of Statistical Tests
- {ggprism} 1.0.1: A ‘ggplot2’ Extension Inspired by ‘GraphPad Prism’
- {folio} 1.0.0: Datasets for Teaching Archaeology and Paleontology
- {httpproblems} 1.0.0: Report Errors in Web Applications with ‘Problem Details’ (RFC 7807)
- {box} 1.0.0: Write Reusable, Composable and Modular R Code
- {wordpiece} 1.0.2: R Implementation of Wordpiece Tokenization
- {ROCket} 1.0.0: Simple and Fast ROC Curves
- {osmextract} 0.2.0: Download and Read OpenStreetMap Data Extracts
- {astrochron} 1.0: A Computational Tool for Astrochronology
- {ggh4x} 0.1.2.1: Hacks for ‘ggplot2’
- {covidprobability} 0.1.0: Estimate the Unit-Wide Probability of COVID-19
- {ORTSC} 1.0.0: Connects to Google Cloud API for Label Detection
- {blaster} 1.0: Native R Implementation of an Efficient BLAST-Like Algorithm
- {ontologyPlot} 1.6: Visualising Sets of Ontological Terms
- {tastypie} 0.0.2: Easy Pie Charts
- {omsvg} 0.1.0: Build and Transform ‘SVG’ Objects
- {ggstar} 1.0.1: Star Layer for ‘ggplot2’
- {bsTools} 0.1.0: Create HTML Content with Bootstrap 5 Classes and Layouts
- {quarto} 0.1: R Interface to ‘Quarto’ Markdown Publishing System
- {multidplyr} 0.1.0: A Multi-Process ‘dplyr’ Backend
- {patentr} 0.1.0: Access USPTO Bulk Data in Tidy Rectangular Format
- {detectR} 0.1.0: Change Point Detection
- {Rwtss} 0.8.0: Client for Web Time-Series Service
- {cronologia} 0.1.0: Create an HTML Vertical Timeline from a Data Frame in ‘rmarkdown’ and ‘shiny’
- {benford} 0.1.0: Benford’s Analysis on Large Data Sets
Updated Packages
- RcppSimdJson 0.1.4 on CRAN: New Improvements
- RcppSMC 0.2.3 on CRAN: Updated Snapshot
- RcppArmadillo 0.10.2.1.0: New Upstream Release
- {mime} 0.10: Map Filenames to MIME Types
- {cachem} 1.0.4: Cache R Objects with Automatic Pruning
- {RVA} 0.0.4: RNAseq Visualization Automation
- {fulltext} 1.7.0: Full Text of ‘Scholarly’ Articles Across Many Data Sources
- {RcppSimdJson} 0.1.4: ‘Rcpp’ Bindings for the ‘simdjson’ Header-Only Library fo ‘JSON’ Parsing
- {resumer} 0.0.5: Build Resumes with R
- {MASS} 7.3-53.1: Support Functions and Datasets for Venables and Ripley’s MASS
- {promises} 1.2.0.1: Abstractions for Promise-Based Asynchronous Programming
- {wordpressr} 0.2.1: An API Wrapper for WordPress Site APIs
- {Tplyr} 0.4.0: A Grammar of Clinical Data Summary
- {shinyloadtest} 1.1.0: Load Test Shiny Applications
- {waldo} 0.2.4: Find Differences Between R Objects
- {billboarder} 0.3.0: Create Interactive Chart with the JavaScript ‘Billboard’ Library
- {websocket} 1.3.2: ‘WebSocket’ Client Library
- {xfun} 0.21: Miscellaneous Functions by ‘Yihui Xie’
- {rfishbase} 3.1.6: R Interface to ‘FishBase’
- {RcppSMC} 0.2.3: Rcpp Bindings for Sequential Monte Carlo
- {prettyB} 0.2.2: Pretty Base Graphics
- {usethis} 2.0.1: Automate Package and Project Setup
- {stopwords} 2.2: Multilingual Stopword Lists
- {RcppArmadillo} 0.10.2.1.0: ‘Rcpp’ Integration for the ‘Armadillo’ Templated Linear Algebra Library
- {systemfonts} 1.0.1: System Native Font Finding
- {AzureGraph} 1.2.1: Simple Interface to ‘Microsoft Graph’
- {survivalmodels} 0.1.6: Models for Survival Analysis
- {readabs} 0.4.8: Download and Tidy Time Series Data from the Australian Bureau of Statistics
- {fabricatr} 0.14.0: Imagine Your Data Before You Collect It
- {crayon} 1.4.1: Colored Terminal Output
- {qs} 0.23.6: Quick Serialization of R Objects
Videos and Podcasts
-
TidyX Episode 48: NBA Game Simulation, purrr, and base R distribution functions
-
Shiny Developer Series: Inside the most over-the-top Shiny apps for a virtual racing league!
-
Upcoming Why R Webinar - Interpretation of single-cell RNA-seq trajectories
Tutorials
R Project Updates
Updates from R Core:
Upcoming Events in 3 Months
Events in 3 Months:
Jobs
Call for Participation
Quotes of the Week
@emilyriederer's blog post on "Building a team of internal R packages" mentions rOpenSci's dev Guide (https://t.co/H8YnkzHZoU) as a resource on package design, and with special reference to function naming. https://t.co/fVF3eBFbh7
— rOpenSci (@rOpenSci) February 10, 2021
A nice new feature in RStudio as it's now possible to track Memory Usage interactively
— Ihaddaden M. EL Fodil, Ph.D (@moh_fodil) February 10, 2021
PS: it's only available in the daily builds.#RStats pic.twitter.com/IleaWXqgGY
If you use #rstats {tidyverse} and {MASS}, this will save you a lot of grief. h/t @thomas_neitmann pic.twitter.com/5cb3fqIt3U
— Ed Hagen (@ed_hagen) February 10, 2021