Live
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
{{ item.date }}
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} )
R Weekly 2024-W17 volcano plots, box, duckplyr
This week’s release was curated by Jonathan Carroll, with help from the RWeekly team members and contributors.
Highlight
Insights
- Querying JSON files with AWS Athena and the noctua R package
- Interactive volcano plots with the ggiraph R package
- Navigating the Data Pipes: An R Programming Journey with Mario Bros.
- PowerQuery Puzzle solved with R
- Jack polynomials with symbolic parameter
- 3MW (Hosting HTML files)
- Modular R code for analytical projects with {box}
- KNN vs. XGBoost Rivalry: Women Employment in Management
- Simulation to understand two kinds of measurement error in regression
- Asset Allocation
- Parameter Constraints & Significance
- Risk/Reward Tradeoff
- Model Validation
- Parameter Significance & Parsimonious Models
- Leverage Effect
- Skewed Returns
- What is a GARCH Model?
- A Guide to Removing Multiple Rows in R Using Base R
- Mastering Rows: Selecting by Index in R
- Estimating Chi-Square Distribution Parameters Using R
- Selecting Rows with Specific Values: Exploring Options in R
- A Guide to Selecting Rows with NA Values in R Using Base R
- Extracting the Last N’th Row in R Data Frames
- Checking Row Existence Across Data Frames in R
- Masterclass: Data Cleaning with R
- R Highcharts Drilldown - How to Create Animated and Interactive Drilldown Charts in R
R Users
- Navigating R’s Impact in Vienna: Insights from the Finance and Pharmaceutical Sectors
- Building Data Highways: Kirill Müller’s Journey in Enhancing R’s Database
New Packages
CRAN
- {sqltargets} - targets extension for standalone SQL files.
- {bagyo} 0.1.1: Philippine Tropical Cyclones Data (post)
- {RbyExample} 0.0.100: Data for the Book “R by Example”
- {login} 0.9.3: ‘shiny’ Login Module
- {geonode4R} 0.1: Interface to ‘GeoNode’ REST API
- {xlcharts} 0.0.1: Create Native ‘Excel’ Charts and Work with Microsoft ‘Excel’ Files
- {future.mirai} 0.2.0: A ‘Future’ API for Parallel Processing using ‘mirai’
- {ipeaplot} 0.3.1: Add Ipea Editorial Standards to ‘ggplot2’ Graphics
- {sentopics} 0.7.3: Tools for Joint Sentiment and Topic Analysis of Textual Data
- {filters} 0.3.1: A “Snake_case” Filter System for R
- {DataPackageR} 0.15.9: Construct Reproducible Analytic Data Sets as R Packages
- {Paris2024Colours} 0.1.2: Color Palettes Inspired by Paris 2024 Olympic and Paralympic Games
- {cardinalR} 0.1.1: Collection of Data Structures
- {mapmisc} 2.1.0: Utilities for Producing Maps
- {reproducible} 2.0.12: Enhance Reproducibility of R Code
- {zendown} 0.0.2: Access Files from ‘Zenodo’ Deposits
- {ElevDistr} 1.0.8: Calculate the Distance to the Nearest Local Treeline
- {relcircle} 1.0: Draw Regulatory Relationships Between Genes
- {heck} 0.1.0: Highly Performant String Case Converter
- {smplot2} 0.2.0: Creating and Annotating a Composite Plot in ‘ggplot2’
- {WayFindR} 0.1.2: Computing Graph Structures on WikiPathways
GitHub or Bitbucket
Updated Packages
- gssr is now two packages: gssr and gssrdoc
- {RcppArmadillo} 0.12.8.2.1: ‘Rcpp’ Integration for the ‘Armadillo’ Templated Linear Algebra Library - diffify (post)
- {tune} 1.2.1: Tidy Tuning Tools - diffify (post)
- {savvy} 0.6.0
- {tidypolars} 0.7.0
- {Factoshiny} 2.6: Perform Factorial Analysis from ‘FactoMineR’ with a Shiny Application - diffify
- {FactoMineR} 2.10: Multivariate Exploratory Data Analysis and Data Mining - diffify
- {dbparser} 2.0.3: Drugs Databases Parser - diffify
- {keras} 2.15.0: R Interface to ‘Keras’ - diffify
- {protr} 1.7-1: Generating Various Numerical Representation Schemes for Protein Sequences - diffify
- {tourr} 1.2.0: Tour Methods for Multivariate Data Visualisation - diffify
- {tfruns} 1.5.3: Training Run Tools for ‘TensorFlow’ - diffify
- {redcapAPI} 2.9.0: Interface to ‘REDCap’ - diffify
- {neuralGAM} 1.1.1: Interpretable Neural Network Based on Generalized Additive Models - diffify
- {censored} 0.3.1: ‘parsnip’ Engines for Survival Models - diffify
- {listarrays} 0.4.0: A Toolbox for Working with R Arrays in a Functional Programming Style - diffify
- {envir} 0.3.0: Manage R Environments Better - diffify
- {commafree} 0.2.0: Call Functions Without Commas Between Arguments - diffify
- {hdf5r.Extra} 0.0.6: Extensions for ‘HDF5’ R Interfaces - diffify
- {pkgdown} 2.0.9: Make Static HTML Documentation for a Package - diffify
- {felp} 0.5.0: Functional Help for Functions, Objects, and Packages - diffify
- {keras3} 0.2.0: R Interface to ‘Keras’ - diffify+ {explainer} 1.0.1: Machine Learning Model Explainer - diffify
- {adbcsqlite} 0.11.0.1: ‘Arrow’ Database Connectivity (‘ADBC’) ‘SQLite’ Driver - diffify
- {targets} 1.7.0: Dynamic Function-Oriented ‘Make’-Like Declarative Pipelines - diffify
- {tarchetypes} 0.9.0: Archetypes for Targets - diffify
- {shinyWidgets} 0.8.5: Custom Inputs Widgets for Shiny - diffify
- {tern} 0.9.4: Create Common TLGs Used in Clinical Trials - diffify
- {ggfortify} 0.4.17: Data Visualization Tools for Statistical Analysis Results - diffify
- {sassy} 1.2.4: Makes ‘R’ Easier for Everyone - diffify
- {optparse} 1.7.5: Command Line Option Parser - diffify
- {tuneR} 1.4.7: Analysis of Music and Speech - diffify
- {lme4} 1.1-35.3: Linear Mixed-Effects Models using ‘Eigen’ and S4 - diffify
- {tiledb} 0.26.0: Modern Database Engine for Complex Data Based on Multi-Dimensional Arrays - diffify
- {tensorflow} 2.16.0: R Interface to ‘TensorFlow’ - diffify
- {explore} 1.3.0: Simplifies Exploratory Data Analysis - diffify
- {bookdown} 0.39: Authoring Books and Technical Documents with R Markdown - diffify
- {Rd2roxygen} 1.16: Convert Rd to ‘Roxygen’ Documentation - diffify
- {rtables} 0.6.7: Reporting Tables - diffify
- {rlistings} 0.2.8: Clinical Trial Style Data Readout Listings - diffify
- {ggeffects} 1.5.2: Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs - diffify
- {tidyfst} 1.7.8: Tidy Verbs for Fast Data Manipulation - diffify
- {reticulate} 1.36.0: Interface to ‘Python’ - diffify
- {testthat} 3.2.1.1: Unit Testing for R - diffify
- {fanyi} 0.0.7: Translate Words or Sentences via Online Translators - diffify
- {collapse} 2.0.13: Advanced and Fast Data Transformation - diffify
- {marginaleffects} 0.19.0: Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests - diffify
Videos and Podcasts
R Internationally
Tutorials
R Project Updates
Updates from R Core:
Call for Participation
Upcoming Events in 3 Months
Events in 3 Months:
-
Decade of Data: Celebrating 10 Years of Innovation at the New York R Conference
-
Optimal policy learning based on causal machine learning in R workshop
-
Unlocking Financial Insights: Join Us at the R Finance Conference
-
R/Medicine Coming June 10-14, 2024 – Call for Abstracts Open – Keynotes Announced
Jobs
💼 Explore Jobs & Gigs Board on RStudio Community 💼