Live
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
{{ item.date }}
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} )
R Weekly 2023-W33 install.packages(), C code in R, refugees
This week’s release was curated by Ryo Nakagawara, with help from the R Weekly team members and contributors.
Highlight
Insights
R in the Real World
R in Organizations
R in Academia
-
Multi-step Estimators and Shrinkage Effect in Time Series Models
-
ggcoverage: an R package to visualize and annotate genome coverage for various NGS data
Resources
New Packages
CRAN
- {regressinator} 0.1.2: Simulate and Diagnose (Generalized) Linear Models
- {ecoregime} 0.1.2: Analysis of Ecological Dynamic Regimes
- {HealthCal} 0.1.0: Health Calculator
- {chatAI4R} 0.0.11: Chat-Based Interactive Artificial Intelligence for R
- {CFtime} 1.0.0: Using CF-Compliant Calendars with Climate Projection Data
- {instantiate} 0.0.2: Pre-Compiled ‘CmdStan’ Models in R Packages
- {DRquality} 0.2.0: Quality Measurements for Dimensionality Reduction
- {binomCI} 1.0: Confidence Intervals for a Binomial Proportion
- {ineptR} 0.1.0: Wrapper for Statistics Portugal API
- {windows.pls} 0.1.0: Segmentation Approaches in Chemometrics
- {duckdbfs} 0.0.1: High Performance Remote File System Access Using ‘duckdb’
- {rprofile} 0.2.0: Load Both User-Global and Project-Specific R Profile Configurations
- {s3} 1.0.0: Download Files from ‘AWS S3’
- {suggests} 0.1.0: Declare when Suggested Packages are Needed
GitHub or Bitbucket
- {duckdbfs} 0.0.1: Simple wrappers for duckdb to open local and remote filesystems.
- {geocausal} 0.1.0: Causal inference with spatio-temporal data in R.
Updated Packages
- {nanonext} 0.9.2: NNG (Nanomsg Next Gen) Lightweight Messaging Library
- {mirai.promises} 0.1.2: Make ‘Mirai’ ‘Promises’
- {ichimoku} 1.4.7: Visualization and Tools for Ichimoku Kinko Hyo Strategies
- {GFM} 1.2.1: Generalized Factor Model - diffify
- {stars} 0.6-3: Spatiotemporal Arrays, Raster and Vector Data Cubes - diffify
- {options} 0.0.2: Simple mechanisms for defining and interpreting package options. Provides helpers for interpreting environment variables, global options, defining default values and more. - diffify
- {recipes} 1.0.7: Preprocessing and Feature Engineering Steps for Modeling - diffify
- {osmextract} 0.5.0: Download and Import Open Street Map Data Extracts - diffify
- {htmltools} 0.5.6: Tools for HTML - diffify
- {progressr} 0.14.0: An Inclusive, Unifying API for Progress Updates - diffify
- {targets} 1.2.2: Dynamic Function-Oriented ‘Make’-Like Declarative Pipelines - diffify
- {renv} 1.0.1: Project Environments - diffify
- {promises} 1.2.1: Abstractions for Promise-Based Asynchronous Programming - diffify
- {reticulate} 1.31: Interface to ‘Python’ - diffify
- {readODS} 2.0.0: Read and Write ODS Files - diffify
- {RcppArmadillo} 0.12.6.1.0: ‘Rcpp’ Integration for the ‘Armadillo’ Templated Linear Algebra Library - diffify
- {purrr} 1.0.2: Functional Programming Tools - diffify
- {igraph} 1.5.1: Network Analysis and Visualization - diffify
- {gmapsdistance} 4.0.4: Distance and Travel Time Between Two Points from Google Maps - diffify
- {glmnetr} 0.3-1: Nested Cross Validation for the Relaxed Lasso and Other Machine Learning Models - diffify
- {jskm} 0.5.2: Kaplan-Meier Plot with ‘ggplot2’ - diffify
- {HistData} 0.9-1: Data Sets from the History of Statistics and Data Visualization - diffify
- {ggplotify} 0.1.2: Convert Plot to ‘grob’ or ‘ggplot’ Object - diffify
- {ggfun} 0.1.2: Miscellaneous Functions for ‘ggplot2’ - diffify
- {finnts} 0.3.0: Microsoft Finance Time Series Forecasting Framework - diffify
- {dfoliatR} 0.3.0: Detection and Analysis of Insect Defoliation Signals in Tree Rings - diffify
- {bayesPop} 10.0-1: Probabilistic Population Projection - diffify
- {aplot} 0.2.0: Decorate a ‘ggplot’ with Associated Information - diffify
- {tinytex} 0.46: Helper Functions to Install and Maintain TeX Live, and Compile LaTeX Documents - diffify
- {bookdown} 0.35: Authoring Books and Technical Documents with R Markdown - diffify
- {canvasXpress} 1.45.4: Visualization Package for CanvasXpress in R - diffify
- {bruceR} 2023.8: Broadly Useful Convenient and Efficient R Functions - diffify
- {av} 0.8.4: Working with Audio and Video in R - diffify
- {yahoofinancer} 0.2.0: Fetch Data from Yahoo Finance API - diffify
- {text} 1.0: Analyses of Text using Transformers Models from HuggingFace, Natural Language Processing and Machine Learning - diffify
- {nlme} 3.1-163: Linear and Nonlinear Mixed Effects Models - diffify
- {modeldata} 1.2.0: Data Sets Useful for Modeling Examples - diffify
- {rsleep} 1.0.8: Analysis of Sleep Data - diffify
- {h2o} 3.42.0.2: R Interface for the ‘H2O’ Scalable Machine Learning Platform - diffify
- {pkgndep} 1.99.2: Analyze Dependency Heaviness of R Packages - diffify
- {scorecard} 0.4.3: Credit Risk Scorecard - diffify
Videos and Podcasts
Tutorials
-
Mastering Data Visualization: A Guide to Harnessing the Power of R’s par() Function
-
Calculating the prediction interval coverage probability (PICP)
-
The ultimate practical guide to multilevel multinomial conjoint analysis with R
R Project Updates
Updates from R Core:
Upcoming Events in 3 Months
Events in 3 Months:
Jobs
💼 Explore Jobs & Gigs Board on RStudio Community 💼
rtistry
data driven #generativeart #wesanderson colors
— Abiyu Giday (@abiyugiday) August 12, 2023
"titled : Babinga Interlude". #rtistry pic.twitter.com/JegTKwwJRu
Quotes of the Week
(Using R on mobile phone, demo)
「俺のスマホはRが動くんだぜ!」という遊び pic.twitter.com/iTCcpoimNb
— あきる (@paithiov909) August 5, 2023
lol at these names #rstats pic.twitter.com/8tClBdTdLr
— Andrew Heiss (🐘 @[email protected]) (@andrewheiss) August 7, 2023