Live
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
{{ item.date }}
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} )
R Weekly 2021-W06
This week’s release was curated by Tony ElHabr, with help from the RWeekly team members and contributors.
Highlight
Insights
R in the Real World
R in Organizations
R in Academia
Resources
New Packages
CRAN
- {redoc} 2.0.0.49: Generates ‘Redoc’ Documentation from an ‘OpenAPI’ Specification
- {rapidoc} 8.4.3: Generates ‘RapiDoc’ Documentation from an ‘OpenAPI’ Specification
- {ridge} 2.9: Ridge Regression with Automatic Selection of the Penalty Parameter
- {spatstat.linnet} 1.65-3: Linear Networks Functionality of the ‘spatstat’ Package
- {tarchetypes} 0.0.4: Archetypes for Targets
- {cronologia} 0.1.0: Create an HTML Vertical Timeline from a Data Frame in ‘rmarkdown’ and ‘shiny’
- {motif} 0.4.1: Local Pattern Analysis
- {sassy} 1.0.3: Makes ‘R’ Easier for ‘SAS®’ Programmers
- {hockeystick} 0.4.0: Download and Visualize Essential Climate Change Data
- {RcppFastFloat} 0.0.1: ‘Rcpp’ Bindings for the ‘fast_float’ Header-Only Library for Number Parsing
Updated Packages
- {rms} 6.1-1: Regression Modeling Strategies
- {feasts} 0.1.7: Feature Extraction and Statistics for Time Series
- {officedown} 0.2.1: Enhanced ‘R Markdown’ Format for ‘Word’ and ‘PowerPoint’
- {flextable} 0.6.3: Functions for Tabular Reporting
- {bipartite} 2.16: Visualising Bipartite Networks and Calculating Some (Ecological) Indices
- {rgdal} 1.5-23: Bindings for the ‘Geospatial’ Data Abstraction Library
- {spatstat.core} 1.65-5: Core Functionality of the ‘spatstat’ Package
- {targets} 0.1.0: Dynamic Function-Oriented ‘Make’-Like Declarative Workflows
- {duckdb} 0.2.4: DBI Package for the DuckDB Database Management System
- {vitae} 0.4.1: Curriculum Vitae for R Markdown
- {shinyWidgets} 0.5.7: Custom Inputs Widgets for Shiny
- {mlr3proba} 0.3.1: Probabilistic Supervised Learning for ‘mlr3’
- {wrapr} 2.0.7: Wrap R Tools for Debugging and Parametric Programming
Videos and Podcasts
Shiny Apps
R Internationally
Tutorials
-
Let’s grow trees - the fast way to create and visualise Decision Trees using {explore}
-
Introduction to leaflegend: Map Symbols and Legend Styling for leaflet
-
Amazon Athena {dbplyr} Implicit Usage of Presto Functions and Making JSON Casting Great Again
R Project Updates
Updates from R Core:
Upcoming Events in 3 Months
Events in 3 Months:
Jobs
Call for Participation
Quotes of the Week
🚀 Happy to release tidy.js today on npm. Inspired by the tidyverse and dplyr, tidy.js aims to bring the ergonomics of data wrangling from #Rstats to the js (and typescript) community.
— Peter Beshai (@pbesh) February 2, 2021
site: https://t.co/faolPmwy8v (+ playground)
repo: https://t.co/eOJnNGelnV pic.twitter.com/cwEYCRb3JB
INTERPRETABILITY, ACCESSABILITY, TIDY CODE, GRAPHICS, AESTHETICS, BRANDING, COMMUNICATION, TALKING TO PEOPLE SMARTER THAN YOU , SOCIAL MEDIA IT ALL MATTERS
— Asmae Toumi (@asmae_toumi) February 5, 2021