Live
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
{{ item.date }}
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} )
R Weekly 2024-W20 Aesthetics Wiki, Dplyr vs DuckDB, TLG Catalog WebR
This week’s release was curated by Sam Parmar, with help from the R Weekly team members and contributors.
Highlight
Insights
-
The True ROI of Doing It Right the First Time in Software Projects
-
R Dplyr vs. DuckDB - How to Enhance Your Data Processing Pipelines with R DuckDB
R in Organizations
R in Academia
New Releases
New Packages
CRAN
- {shinymgr} 1.1.0: A Framework for Building, Managing, and Stitching ‘shiny’ Modules into Reproducible Workflows
- {heiscore} 0.0.1: Score and Plot the Healthy Eating Index from NHANES Data
- {lzstring} 0.1.2: Wrapper for ‘lz-string’ ‘C++’ Library
- {lotterybr} 0.1.0: Lottery Datasets from Caixa Economica Federal
- {modelgrid} 1.2.0: A Framework for Creating, Managing and Training Multiple ‘caret’ Models
- {flexlsx} 0.2.1: Exporting ‘flextable’ to ‘xlsx’ Files
Updated Packages
- {gwavr} 0.3.1: Get Water Attributes Visually in R - diffify
- {geostan} 0.6.1: Bayesian Spatial Analysis - diffify
- {plume} 0.2.4: A Simple Author Handler for Scientific Writing - diffify
- {paws.storage} 0.6.0: ‘Amazon Web Services’ Storage Services - diffify
- {paws.machine.learning} 0.6.0: ‘Amazon Web Services’ Machine Learning Services - diffify
- {FaaSr} 1.2.1: FaaS (Function as a Service) Package - diffify
- {paws.database} 0.6.0: ‘Amazon Web Services’ Database Services - diffify
- {EpiNow2} 1.5.0: Estimate Real-Time Case Counts and Time-Varying Epidemiological Parameters - diffify
- {popEpi} 0.4.12: Functions for Epidemiological Analysis using Population Data - diffify
- {fslr} 2.25.3: Wrapper Functions for ‘FSL’ (‘FMRIB’ Software Library) from Functional MRI of the Brain (‘FMRIB’) - diffify
- {fmtr} 1.6.4: Easily Apply Formats to Data - diffify
- {ftExtra} 0.6.4: Extensions for ‘Flextable’ - diffify
- {ExpImage} 0.10.1: Analysis of Images in Experiments - diffify
- {arcgisutils} 0.3.0: ArcGIS Utility Functions - diffify
- {logr} 1.3.8: Creates Log Files - diffify
- {insurancerating} 0.7.3: Analytic Insurance Rating Techniques - diffify
- {leaflegend} 1.2.1: Add Custom Legends to ‘leaflet’ Maps - diffify
- {taylor} 3.1.0: Lyrics and Song Data for Taylor Swift’s Discography - diffify
- {scientific} 2024.2: Highly Customizable ‘rmarkdown’ Theme for Scientific Reporting - diffify
- {ggsurvfit} 1.1.0: Flexible Time-to-Event Figures - diffify
- {tidylog} 1.1.0: Logging for ‘dplyr’ and ‘tidyr’ Functions - diffify
- {formatdown} 0.1.4: Formatting Numbers in ‘rmarkdown’ Documents - diffify
- {tinycodet} 0.5.0: Functions to Help in your Coding Etiquette - diffify
- {jsmodule} 1.5.4: ‘RStudio’ Addins and ‘Shiny’ Modules for Medical Research - diffify Fitting - diffify
- {editbl} 1.0.4: ‘DT’ Extension for CRUD (Create, Read, Update, Delete) Applications in ‘shiny’ - diffify
- {streetscape} 1.0.1: Collect And Investigate Street Views For Urban Science - diffify
- {happign} 0.3.0: R Interface to ‘IGN’ Web Services - diffify
- {manydata} 0.9.3: A Portal for Global Governance Data - diffify
- {activAnalyzer} 2.1.1: A ‘Shiny’ App to Analyze Accelerometer-Measured Daily Physical Behavior Data - diffify
- {flextable} 0.9.6: Functions for Tabular Reporting - diffify
Videos and Podcasts
R Internationally
-
Modelación Ordenada con R: Aprende todo sobre el proceso de creación de modelos de aprendizaje automático con esta traducción de “Modelación Ordenada con R” un libro de Max Kuhn y Julia Silge con el que aprenderas a través de ejemplos todo lo realcionado con la creación de modelos de aprendizaje automático listos para producción.
Tutorials
-
Calculating the proportion of US state borders that are coastlines: Measuring coastlines is hard and causes fractal paradoxes, but we can use R and {sf} to try!
-
mlsauce’s
v0.18.2
: various examples and benchmarks with dimension reduction - How to Check if a Column Contains a String in R
- How to Collapse Text by Group in a Data Frame Using R
- How to Select Columns by Index in R (Using Base R)
- Counting NA Values in Each Column: Comparing Methods in R
- Exploring Model Selection with TidyDensity: Understanding AIC for Statistical Distributions
- Reproducing and adapting the UN Population Projections by @ellis2013nz
R Project Updates
Updates from R Core:
Call for Participation
Upcoming Events in 3 Months
Events in 3 Months:
Connect
Join the Data Science Learning Community
rtistry
Getting ready for summer with a spinning render of Enoshima. 🏖️ Data from OpenStreetMap contributors. Tried hard to find lidar data but failed.#rayshader adventures, an #rstats tale pic.twitter.com/5iW1F2KOl9
— terence (@researchremora) May 11, 2024
Almost forgot this projection so here it is with the world's ocean currents. Should I name the currents?#rayshader adventures, an #rstats tale pic.twitter.com/4qCcHaHXy2
— terence (@researchremora) May 8, 2024
Quotes of the Week
Had a great example recently of the advantages of using #targets for #rstats workflows. My EC2 instance decided to eat itself & crash a few hrs in. Yes the current function was lost but the 3hrs of analysis prior was perfectly captured in targets, ready to run where it left off👍 pic.twitter.com/ohxY5j3IXK
— Luke Pembleton (@lwpembleton) May 10, 2024
https://t.co/h5jhKAY5nw pic.twitter.com/LsDuISEYhm
— Bruno Rodrigues (@[email protected]) (@brodriguesco) May 8, 2024