Live
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }} ( {{ get_host(link.U) }} )
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}( {{ get_host(link.U) }} )
{{ item.date }}
-
{{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }} - {{ link.N }}
( {{ get_host(link.U) }} ){{ is_pkg(link.U) }}{{ link.T }} {{ get_host(link.U) }}
( {{ get_host(link.U) }} )
R Weekly 2024-W21, Automate code refactoring, Faster Code, Open-Source Project
This week’s release was curated by Batool Almarzouq, with help from the R Weekly team members and contributors.
Highlight
Insights
-
Enhancing R: The Vision and Impact of Jan Vitek’s MaintainR Initiative
-
The Evolution of Melbourne’s Business Analytics and R Business User Group
R in the Real World
New Packages
-
{ravetools} 0.1.5: Signal and Image Processing Toolbox for Analyzing Intracranial Electroencephalography Data
-
{mgwrhw} 1.1.1.5: Displays GWR (Geographically Weighted Regression) and Mixed GWR Output and Map
-
{crosstalkr} 1.0.5: Analysis of Graph-Structured Data with a Focus on Protein-Protein Interaction Networks
-
{crosslag} 0.1.0: Perform Linear or Nonlinear Cross Lag Analysis
-
{bbnet} 1.0.1: Create Simple Predictive Models on Bayesian Belief Networks
-
{CDGHMM} 0.1.0: Hidden Markov Models for Multivariate Panel Data
-
{BioM2} 1.0.6: Biologically Explainable Machine Learning Framework
-
{srcpkgs} 0.1: R Source Packages Manager
-
{tricolore} 1.2.4: A Flexible Color Scale for Ternary Compositions
-
{biologicalActivityIndices} 0.1.0: Biological Activity Indices
-
{arcgisplaces} 0.1.0: Search for POIs using ArcGIS ‘Places Service’
-
{rechaRge} 1.0.0: HydroBudget – Groundwater Recharge Model
-
{rKolada} 0.2.3: Access Data from the ‘Kolada’ Database
-
{qlcVisualize} 0.2.1: Visualization for Quantitative Language Comparison
-
{ggspark} 0.0.2: ‘ggplot2’ Functions to Create Tufte Style Sparklines
Updated Packages
-
{radiant} 1.6.1: Business Analytics using R and Shiny - diffify
-
{ggsci} 3.0.3: Scientific Journal and Sci-Fi Themed Color Palettes for ‘ggplot2’ - diffify
-
{deps} 0.2.0: Dependency Management with ‘roxygen’-Style Comments - diffify
-
{cleanNLP} 3.1.0: A Tidy Data Model for Natural Language Processing - diffify
-
{FIESTA} 3.6.3: Forest Inventory Estimation and Analysis - diffify
-
{fuj} 0.2.1: Functions and Utilities for Jordan - diffify
-
{shiny.react} 0.4.0: Tools for Using React in Shiny - diffify
-
{rspm} 0.5.3: ‘RStudio’ Package Manager - diffify
-
{ledger} 2.0.11: Utilities for Importing Data from Plain Text Accounting Files - diffify
-
{spNetwork} 0.4.4: Spatial Analysis on Network - diffify
-
{ggscidca} 0.2.3: Plotting Decision Curve Analysis with Coloured Bars - diffify
-
{fedmatch} 2.0.6: Fast, Flexible, and User-Friendly Record Linkage Methods - diffify
-
{openairmaps} 0.9.0: Create Maps of Air Pollution Data - diffify
-
{prqlr} 0.8.1: R Bindings for the ‘prqlc’ Rust Library - diffify
-
{modelsummary} 2.1.0: Summary Tables and Plots for Statistical Models and Data: Beautiful, Customizable, and Publication-Ready - diffify
-
{glossr} 0.8.0: Use Interlinear Glosses in R Markdown - diffify
-
{xaringanExtra} 0.8.0: Extras and Extensions for ‘xaringan’ Slides - diffify
-
{ruminate} 0.2.3: A Pharmacometrics Data Transformation and Analysis Tool - diffify
-
{SSBtools} 1.5.2: Statistics Norway’s Miscellaneous Tools - diffify
-
{fscache} 1.0.3: File System Cache - diffify
-
{drake} 7.13.10: A Pipeline Toolkit for Reproducible Computation at Scale - diffify
-
{iraceplot} 1.3: Plots for Visualizing the Data Produced by the ‘irace’ Package - diffify
-
{simstudy} 0.8.0: Simulation of Study Data - diffify
-
{hmer} 1.5.9: History Matching and Emulation Package - diffify
-
{seqgendiff} 1.2.4: RNA-Seq Generation/Modification for Simulation - diffify
-
{latrend} 1.6.1: A Framework for Clustering Longitudinal Data - diffify
-
{microeco} 1.7.0: Microbial Community Ecology Data Analysis - diffify
-
{ggblanket} 9.0.0: Simplify ‘ggplot2’ Visualisation - diffify
-
{misty} 0.6.3: Miscellaneous Functions ‘T. Yanagida’ - diffify
-
{tidyEdSurvey} 0.1.3: Integration of ‘dplyr’ and ‘ggplot2’ with ‘EdSurvey’ - diffify
-
{unix} 1.5.8: POSIX System Utilities - diffify ct.org/package=opencpu): Producing and Reproducing Results - diffify
-
{nsRFA} 0.7-17: Non-Supervised Regional Frequency Analysis - diffify
-
{rgoogleads} 0.11.0: Loading Data from ‘Google Ads API’ - diffify
Videos and Podcasts
R Internationally
Tutorials
-
A simple probabilistic algorithm for estimating the number of distinct elements in a data stream
-
How to replace some non-available values in a vector with values coming from another vector?
-
How to filter values in a nested tibble without using
filter()
from dplyr?
R Project Updates
Updates from R Core:
Call for Participation
Upcoming Events in 3 Months
Events in 3 Months:
Connect
Join the Data Science Learning Community
artistry
Quotes of the Week
When you're about to start writing about creating art with sine and cosine waves for the #rtistry book, but your numerophobic self has to explain the math behind the sine and cosine waves first 🫠: pic.twitter.com/g7wy923bgh
— Meghan Harris (@meghansharris) March 16, 2024